Search

Late Cretaceous bird from Madagascar reveals unique development of beaks - Nature.com

australiablogsnews.blogspot.com
  • 1.

    Xu, X. et al. An integrative approach to understanding bird origins. Science 346, 1253293 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 2.

    Zhou, Z., Clarke, J. & Zhang, F. Insight into diversity, body size and morphological evolution from the largest Early Cretaceous enantiornithine bird. J. Anat. 212, 565–577 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Brusatte, S. L., O’Connor, J. K. & Jarvis, E. D. The origin and diversification of birds. Curr. Biol. 25, R888–R898 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    O’Connor, J. K. in The Evolution of Feathers (eds Foth, C. & Rauhut, O. W. M.) 147–172 (Springer, 2020).

  • 5.

    O’Connor, J. K. & Chiappe, L. M. A revision of enantiornithine (Aves: Ornithothoraces) skull morphology. J. Syst. Palaeontol. 9, 135–157 (2011).

    Article  Google Scholar 

  • 6.

    Huang, J. et al. A new ornithurine from the Early Cretaceous of China sheds light on the evolution of early ecological and cranial diversity in birds. PeerJ 4, e1765 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 7.

    Bhullar, B.-A. S. et al. How to make a bird skull: major transitions in the evolution of the avian cranium, paedomorphosis, and the beak as a surrogate hand. Integr. Comp. Biol. 56, 389–403 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Young, N. M. et al. Embryonic bauplans and the developmental origins of facial diversity and constraint. Development 141, 1059–1063 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Mayr, G. Comparative morphology of the avian maxillary bone (os maxillare) based on an examination of macerated juvenile skeletons. Acta Zool. 101, 24–38 (2020).

    Article  Google Scholar 

  • 10.

    Hu, H., O’Connor, J. K. & Zhou, Z. A new species of Pengornithidae (Aves: Enantiornithes) from the Lower Cretaceous of China suggests a specialized scansorial habitat previously unknown in early birds. PLoS ONE 10, e0126791 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 11.

    Bailleul, A. M. et al. An Early Cretaceous enantiornithine (Aves) preserving an unlaid egg and probable medullary bone. Nat. Commun. 10, 1275 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 12.

    Hou, L., Chiappe, L. M., Zhang, F. & Chuong, C.-M. New Early Cretaceous fossil from China documents a novel trophic specialization for Mesozoic birds. Naturwissenschaften 91, 22–25 (2004).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    O’Connor, J. K. et al. Phylogenetic support for a specialized clade of Cretaceous enantiornithine birds with information from a new species. J. Vertebr. Paleontol. 29, 188–204 (2009).

    Article  Google Scholar 

  • 14.

    O’Connor, J. K., Chiappe, L. M., Gao, C. & Zhao, B. Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani. Acta Palaeontol. Pol. 56, 463–475 (2011).

    Article  Google Scholar 

  • 15.

    O’Connor, J. K., Wang, M. & Hu, H. A new ornithuromorph (Aves) with an elongate rostrum from the Jehol Biota, and the early evolution of rostralization in birds. J. Syst. Palaeontol. 14, 939–948 (2016).

    Article  Google Scholar 

  • 16.

    Field, D. J. et al. Complete Ichthyornis skull illuminates mosaic assembly of the avian head. Nature 557, 96–100 (2018).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Field, D. J., Benito, J., Chen, A., Jagt, J. W. M. & Ksepka, D. T. Late Cretaceous neornithine from Europe illuminates the origins of crown birds. Nature 579, 397–401 (2020).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Chiappe, L. M. & Witmer, L. M. Mesozoic Birds: Above the Heads of Dinosaurs (Univ. California Press, 2004).

  • 19.

    Li, Z., Zhou, Z., Wang, M. & Clarke, J. A. A new specimen of large-bodied basal enantiornithine Bohaiornis from the Early Cretaceous of China and the inference of feeding ecology in Mesozoic birds. J. Paleontol. 88, 99–108 (2014).

    Article  Google Scholar 

  • 20.

    Wang, M., Hu, H. & Li, Z. A new small enantiornithine bird from the Jehol Biota, with implications for early evolution of avian skull morphology. J. Syst. Palaeontol. 14, 481–497 (2016).

    Article  Google Scholar 

  • 21.

    Wang, M., O’Connor, J. K. & Zhou, Z. A new robust enantiornithine bird from the Lower Cretaceous of China with scansorial adaptations. J. Vertebr. Paleontol. 34, 657–671 (2014).

    Article  Google Scholar 

  • 22.

    Rogers, R. R., Hartman, J. H. & Krause, D. W. Stratigraphic analysis of Upper Cretaceous rocks in the Mahajanga Basin, northwestern Madagascar: implications for ancient and modern faunas. J. Geol. 108, 275–301 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 23.

    Gauthier, J. A. & de Queiroz, K. in New Perspectives on the Origin and Early Evolution of Birds: Proceedings of the International Symposium in Honor of John H. Ostrom (eds Gauthier, J. & Gall, L. F.). 7–41 (Peabody Museum of Natural History, Yale Univ., 2001).

  • 24.

    Chiappe, L. M., Norell, M. A. & Clark, J. M. A new skull of Gobipteryx minuta (Aves: Enantiornithes) from the Cretaceous of the Gobi Desert. Am. Mus. Novit. 3346, 1–15 (2001).

    Article  Google Scholar 

  • 25.

    Wang, M. & Zhou, Z. A new enantiornithine (Aves: Ornithothoraces) with completely fused premaxillae from the Early Cretaceous of China. J. Syst. Palaeontol. 17, 1299–1312 (2019).

    Article  Google Scholar 

  • 26.

    Hieronymus, T. L. & Witmer, L. M. Homology and evolution of avian compound Rhamphothecae. Auk 127, 590–604 (2010).

    Article  Google Scholar 

  • 27.

    Wang, M., Zhou, Z.-H., O’Connor, J. K. & Zelenkov, N. V. A new diverse enantiornithine family (Bohaiornithidae fam. nov.) from the Lower Cretaceous of China with information from two new species. Vert. Palasiat. 52, 31–76 (2014).

    Google Scholar 

  • 28.

    Wang, M. & Hu, H. A comparative morphological study of the jugal and quadratojugal in early birds and their dinosaurian relatives. Anat. Rec. 300, 62–75 (2017).

    Article  Google Scholar 

  • 29.

    Wang, Y. et al. A previously undescribed specimen reveals new information on the dentition of Sapeornis chaoyangensis. Cretac. Res. 74, 1–10 (2017).

    Article  Google Scholar 

  • 30.

    Hu, H., O’Connor, J. K., Wang, M., Wroe, S. & McDonald, P. G. New anatomical information on the bohaiornithid Longusunguis and the presence of a plesiomorphic diapsid skull in Enantiornithes. J. Syst. Palaeontol. 18, 1481–1495 (2020).

    Article  Google Scholar 

  • 31.

    Hu, H. et al. Evolution of the vomer and its implications for cranial kinesis in Paraves. Proc. Natl Acad. Sci. USA 116, 19571–19578 (2019).

    CAS  Article  Google Scholar 

  • 32.

    Felice, R. N. & Goswami, A. Developmental origins of mosaic evolution in the avian cranium. Proc. Natl Acad. Sci. USA 115, 555–560 (2018).

    CAS  Article  Google Scholar 

  • 33.

    Bhullar, B.-A. S. et al. A molecular mechanism for the origin of a key evolutionary innovation, the bird beak and palate, revealed by an integrative approach to major transitions in vertebrate history. Evolution 69, 1665–1677 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Mallarino, R. et al. Closely related bird species demonstrate flexibility between beak morphology and underlying developmental programs. Proc. Natl Acad. Sci. USA 109, 16222–16227 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Tokita, M., Yano, W., James, H. F. & Abzhanov, A. Cranial shape evolution in adaptive radiations of birds: comparative morphometrics of Darwin’s finches and Hawaiian honeycreepers. Phil. Trans. R. Soc. Lond. B 372, 20150481 (2017).

    Article  Google Scholar 

  • 36.

    Bell, A. & Chiappe, L. M. Statistical approaches for inferring ecology in Mesozoic birds. J. Syst. Palaeontol. 9, 119–133 (2011).

    Article  Google Scholar 

  • 37.

    O’Connor, J. K. The trophic habits of early birds. Palaeogeogr. Palaeoclimatol. Palaeoecol. 513, 178–195 (2019).

    Article  Google Scholar 

  • 38.

    Rogers, R. R. Fine-grained debris flows and extraordinary vertebrate burials in the Late Cretaceous of Madagascar. Geology 33, 297–300 (2005).

    ADS  Article  Google Scholar 

  • 39.

    Rogers, R. R., Krause, D. W., Curry Rogers, K., Rasoamiaramanana, A. H. & Rahantarisoa, L. Paleoenvironment and paleoecology of Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. J. Vertebr. Paleontol. 27, 21–31 (2007).

    Article  Google Scholar 

  • 40.

    Brusatte, S. L., Lloyd, G. T., Wang, S. C. & Norell, M. A. Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur–bird transition. Curr. Biol. 24, 2386–2392 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Turner, A. H., Makovicky, P. J. & Norell, M. A. A review of dromaeosaurid systematics and paravian phylogeny. Bull. Am. Mus. Nat. Hist. 371, 1–206 (2012).

    Article  Google Scholar 

  • 42.

    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Clarke, J. A. & Middleton, K. M. Mosaicism, modules, and the evolution of birds: results from a Bayesian approach to the study of morphological evolution using discrete character data. Syst. Biol. 57, 185–201 (2008).

    PubMed  Article  Google Scholar 

  • 45.

    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v.1.6. http://beast.community/tracer (2014).

  • 46.

    O’Reilly, J. E. & Donoghue, P. C. J. The efficacy of consensus tree methods for summarizing phylogenetic relationships from a posterior sample of trees estimated from morphological data. Syst. Biol. 67, 354–362 (2018).

    PubMed  Article  Google Scholar 

  • 47.

    Goloboff, P. A., Farris, J. & Nixon, K. TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008).

    Article  Google Scholar 

  • 48.

    Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT: tree analysis using new technology. version 1.1 (Willi Hennig Society Edition) http://www.lillo.org.ar/phylogeny/tnt/ (2008).

  • 49.

    Goloboff, P. A. & Catalano, S. A. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238 (2016).

    Article  Google Scholar 

  • Let's block ads! (Why?)



    Science - Latest - Google News
    November 25, 2020 at 11:23PM
    https://ift.tt/2VfCqCF

    Late Cretaceous bird from Madagascar reveals unique development of beaks - Nature.com
    Science - Latest - Google News
    https://ift.tt/2Kb7H4e
    https://ift.tt/3ceUkwc

    Bagikan Berita Ini

    0 Response to "Late Cretaceous bird from Madagascar reveals unique development of beaks - Nature.com"

    Post a Comment

    Powered by Blogger.